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Abstract-This investigation is concerned with the diffusion of an axial load from a bar of arbitrary uniform
cross-section that is immersed in, up to a finite depth, and bonded to a semi-infinite solid of distinct elastic prop­
erties. The bar is perpendicular to the plane boundary of the embedding medium. The determination of the
desired resultant force in the submerged bar-segment is reduced to a Fredholm integral equation by means of an
approximative scheme developed and tested earlier in connection with a more elementary three-dimensional load­
transfer problem. Extensive numerical results illustrating the decay of the bar-force, appropriate to various
choices of the governing geometric and material parameters, are presented for the particular case of a bar of
circular cross-section.

INTRODUCflON

TWO-DIMENSIONAL load-transfer problems, such as those occasioned by the diffusion of
load from an elastic stringer into a coplanar elastic sheet, have attracted repeated attention,
chiefly because of their relevance to the stress analysis and design of aircraft structures.
The rather extensive literature on problems in this category goes back in its origins to a
fundamental paper by Melan [1], in which he dealt with the transfer of an axial load from
an infinite stringer to an all-around infinite elastic sheett The problem concerning the
transmission of an axial load from a transverse stringer (tension-bar), a finite segment of
which overlaps with, and is continuously bonded to, a semi-infinite elastic sheet, was
initially posed by Reissner [2]. References to related publications are to be found in [3-5]
which contain some recent contributions bearing on Melan's and Reissner's problems.

The diffusion of load from a bar into a three-dimensional elastic medium presents
appreciably greater analytical difficulties. A comparatively simple, if somewhat artificial,
example of this kind is supplied by the spatial analogue of Melan's problem, investigated
in [6]. There we considered an infinite cylindrical bar fully immersed in, and continuously
bonded to, an elastic medium of distinct mechanical properties occupying the remainder
of the space; the bar was assumed to be subjected to an axial loading, confined to, and
uniformly distributed over, one of its cross-sections. Our objective consisted in determining
the decay of the resultant bar-force induced by the given loading. This task was performed
rigorously, within three-dimensional elastostatics, for the special case of a bar of circular
cross-section. The results thus obtained were then compared and found to be in favorable

t The results communicated in this paper were obtained in the course of an investigation conducted under
Contract Nonr-220(58) with the Office of Naval Research in Washington, D.C.

t Within Melan's approximate formulation, this problem is mathematically equivalent to the one in which
the stringer is attached to the edge of an elastic sheet occupying a half-plane.
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agreement, with those deduced in [6J by an approximate method that is applicable to a bar
of arbitrary cross-section.

The work summarized in [6J was undertaken primarily as a pilot study for the present
investigation of the three-dimensional counterpart of Reissner's problem, which may be
described as follows. A finite or semi-infinite elastic bar of arbitrary uniform cross-section
is immersed in, up to a finite depth, and continuously bonded to, an elastic half-space of
different material properties, the cylindrical boundary of the bar being perpendicular to
the plane boundary of the half-space. The applied loading is confined to the projecting
portion of the bar and is taken to be statically equivalent to a centroidal axial force. We
seek the decay of the resultant bar-force in the embedded portion of the bar, as a measure of
the diffusion of the applied load into the surrounding semi-infinite medium. This problem
is one of basic importance in structural engineering and soil mechanics because of its
interest in connection with anchor bars and pile-supported buildings. Moreover, its solution
is not readily accessible by rigorous means even for a bar of circular cross-section.

The approximate scheme employed by Melan, and later adopted by Reissner, in dealing
with the plane load-transfer problems considered in [IJ and [2J, respectively, has no direct
analogue in the analysis ofthe corresponding spatial problems. To make this clear we recall
first the simplifying assumptions underlying [IJ and [2]. In both instances the bar is modeled
as a one-dimensional elastic continuum, whereas the sheet is treated as a two-dimensional
elastic medium within the conventional theory of generalized plane stress. Consequently,
both Melan and Reissner regard the bond-force exerted by the stringer on the sheet as an
ideal line-load and impose as a bond condition the requirement that the axial strain in the
bar match the appropriate extensional strain in the sheet. This condition, with the aid of
the familiar two-dimensional singular solutions pertaining to a concentrated load at an
interior point ofan infinite or semi-infinite elastic sheet, leads to a singular integro-differen­
tial equation for the desired bar-force, the integral thus emerging being convergent in the
sense of its Cauchy principal value.

A strictly one-dimensional bar-model, in conjunction with a bond condition based on
the assumption of ideal line-contact, is no longer feasible in dealing with the transfer of
load into a three-dimensional elastic medium: here, in contrast to the situation encountered
in two dimensions, the strain field due to a line-load is unbounded along the line-segment
of load-application.t Indeed, the formal analogue of Melan's formulation in the present
circumstances gives rise to a bond condition that involves a divergent integral and is
therefore devoid of meaning.

To circumvent the difficulty described above, it is essential to amend Melan's assump­
tions. A suitable approximate formulation of the present problem is given in Section 1.
This formulation is based on an adaptation of the approximative scheme devised in [6J,
which was in turn suggested by a corresponding treatment of Reissner's plane problem,
carried out in [5]'t The remainder of the section is devoted to reducing the determination of
the desired resultant force in the bar to the solution of an integral equation of Fredholm's
second kind. An essential tool for the analysis in Section 1 is supplied by Mindlin's [7J
solution to the problem of a concentrated load acting at an interior point of an elastic half­
space.§

t Recall that the strain singularity associated with a concentrated load in three-space is one order higher than
its two-dimensional counterpart.

+See Section 3 of [5].
§ See Mindlin [8] for a systematic derivation of the solution to his problem.
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In Section 2 we specialize the characterization ofthe bar-force deduced in Section 1 for
the particular, physically most significant, case of a bar of circular cross-section. Here we
also establish certain asymptotic properties of the solution appropriate to the circular bar
and present illustrative quantitative results based on the numerical solution of the Fredholm
integral equation that governs the diffusion of the applied load in the present instance.

1. APPROXIMATE FORMULATION OF THE PROBLEM. REDUCTION TO A
FREDHOLM INTEGRAL EQUATION.

We proceed now to an approximate mathematical formulation ofthe three-dimensional
analogue ofReissner's problem described in the Introduction. To this end, let {o; Xl' X2, X3}

be a rectangular cartesian coordinate frame (Fig. 1) with the origin 0, spanning the three­
dimensional Euclidean space E. Further, let x = (x l' X 2 , x 3) denote the position vector of
points in E and call e the unit base-vector in the xrdirection.

Consider a finite or semi-infinite cylindrical elastic bar, the longitudinal centroidal axis
of which coincides with the x3-axis. We call n the generic open cross-sectional region ofthe
bar and assume n to be a bounded plane region, whose boundaryt an is a simple closed
curve, consisting of a finite number of arcs with continuous curvature. Suppose H to be
the open half-space given by

H = {XIXEE,x 3 > A},

BAR
(YOUNG'S MODULUS .,,')

EMBEDDING MEDIUM

(YOUNG'S MODULUS .". POISSON'S RATIO v)

FIG. 1. Geometry of bar and embedding medium.

designate by D the (cylindrical) subdomain of H defined by

D = {xl(X 1 ,X2)En,O < X3 < f},

and set

(1.1)

(1.2)

(1.3)

t If S is a point-set in a Euclidean space of two or three-dimensions, we write S and oS for the closure and
the boundary of S, respectively.
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where nz is the open cross-section of 15 located at X 3 = z. In particular, no and n l stand
for the interiors of the terminal cross-sections of15, situated at x 3 = 0 and X3 = I, respective­
ly (Fig. 1). Next, consider an elastic body ("embedding medium") whose interior occupies
the domain H-15 and suppose one end-portion of the bar occupies 15 and is continuously
bonded to the surrounding solid throughout the interface aD - no' Accordingly, D repre­
sents the interior of the embedded segment of the bar and I is the length of this submerged
segment. Finally, assume the entire loading is confined to the projecting portion of the bar
and is statically equivalent to a force -epo acting along the xraxis, so that Po > 0 corres­
ponds to a tensile loading. We seek the resultant axial bar-force P(X3) (0 S X3 S I), which
governs the load-diffusion into the embedding medium, on the assumption that the latter,
as well as the bar itself, are homogeneous and isotropic linearly elastic solids of possibly
distinct material properties. Let 11 and v, in this order, stand for Young's modulus and
Poisson's ratio of the embedding medium; Young's modulus of the bart will be designated
by 11'.

The present approximate treatment ofthe problem aims at, and is confined in its physical
relevance to, a bar with a maximum cross-sectional diameter that is suitably small compared
to the length ofthe submerged bar-segment. As a first step we extend the embedding medium
throughout the half-space R and consider an elastic body Bin R with the elastic constants
11, v of the original material in H- D. Next, we introduce a fictitious reinforcement B* of
the body B throughout the region D (Fig. 2). The reinforcement B* is chosen in such a way
that the "composite solid" occupying D is "equivalent" to the actual immersed bar­
segment B' in the sense that its extensional stiffness is the same as that of B'. We thus assign
to the reinforcement B* the modulus of elasticity 11* given by

11* = 11' -11 ~ o. (1.4)t

In what follows we treat the extended embedding medium B as a three-dimensional
elastic continuum within the framework ofclassical elastostatics. In contrast, we regard the
fictitious reinforcement B* as a one-dimensional elastic continuum asTar as its constitutive
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FIG. 2. Bar, extended embedding medium, fictitious reinforcement.

t Poisson's ratio of the bar does not enter into the subsequent analysis.
t Note that (1.4) rules out the practically uninteresting case in which rl' < /1.
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law and equilibrium conditions are concerned. Accordingly, B. is governed by the stress­
strain relation

(0 ~ z ~ I), (1.5)

if A is the area of IT, P.(z) is the scalar axial force in B. at X3 = z, positive if tensile, and
8.(Z) is the associated axial strain. Further, the equilibrium requirement for B. furnishes
the differential equation

P.(z) +q(z) = 0 (0 < z < I), (1.6)t

where eq(z) is the "bond-force" per unit bar-length exerted by B on B. at X3 = z. In addition
to the distributed bond-force of scalar density q(z) (0 < z < I), B. is subjected to the external
axial forces - ep.(O) and ep.(I), concentrated within the terminal cross-sections no and n/,
respectively: -ep.(O) is the portion of the applied load -epo transmitted to B. directly,
whereas ep.(l) is the bond-force communicated by B to B. at X3 = 1(see Fig. 2).

The forces external with respect to the body B (extended matrix) consist ofthe distributed
bond-forces oflineal density -eq(z) (0 < z < l) exerted byE. on B, together with the load­
portion -e[po-p.(O)] transmitted to B directly at X 3 = 0 and the bond-force -ep.(l)
concentrated within n/. We assume the foregoing forces to be uniformly distributed over
the respective cross-sections nz (0 < z < I), no and n,(see Fig. 2).

Let (1ij and 8ij (i,j = 1,2,3) be the cartesian components ofthe fields of stress and strain
induced in the body B by the system of external forces acting on B. Further, for every
x E H - n{ and every' E [0, 1], let uiix, ,) and BiJ{X, ,) represent the stresses and strains at
the point x of the semi-infinite medium B due to a uniform body-force distribution over the
closed disk n{, acting in the negative x3-direction, the resultant applied force having unit
magnitude. With the aid of these influence fields one has, for every point x E H - no - n

"
(1iix) = [Po - P.(O)]uiix, 0) +p.(l)udx, I) +f~ q(')uiix, 0 d',

8ii x) = [Po - P.(O)]Biix, 0) +P.(l)Biix, I) +f~ q(OBiix, ,) d'.
(1.7)

Integral representations for the influence fields uij and 8ij entering (1.7) are, in turn,
immediately obtainable from Mindlin's [7], [8] solution for a concentrated load applied
at a point of an elastic half-space. Indeed, designating by aiix,O and Aiix, ,) the stresses
and strains of Mindlin's solution appropriate to the semi-infinite solid B and corresponding
to the unit concentrated load in the negative x 3-direction applied at (0,0, '), one has

(1.8)t

for all x E H- n~o ~ , ~ 1). Explicit representations for au and Aij , in closed elementary
form, will be cited later on.

t If v is a differentiable function of one variable, we write iJ for the derivative of v.
t Here and in the sequel the subscript attached to the element of area indicates the variable of integration.
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Let p(z) be the desired axial bar-force at x 3 = z in the immersed bar segment B'. Then,
within the approximation under consideration, p obeys

p(z) = p*(z)+5O"dx)dA (0 S z s I), (1.9)
n.

where p(O) = p(O +)and p(l) = p(l- ). In order to render p fully determinate, one needs to
adjoin to (1.9) a suitable bond condition that links the deformations of the fictitious rein­
forcing bar B* and those of the extended embedding medium B. For this purpose we adopt
the requirement that the axial strain 8*(Z) in B* be equal to the cross-sectional average over
I1z of the extensional strain 833(X) in B. Consequently,

(1.11)

(0 s z s I, 0 s ( s I, z i= 0,

(0 s z s I, 0 s ( s I, z i= (),

8*(Z) = ~ r 8dx) dA (0 s z s I), (1.10)
A In.

with the understanding that the integral in (1.10) for z = 0 and z = 1is to be interpreted in
the sense of its corresponding limits as z ... 0 and z ... 1from the interior of the interval
[0, I]. Equations (1.5) to (1.10) suffice to characterize p(z)completely over the range 0 S z s 1.

With a view toward making the foregoing characterization of the bar-force p more
explicit, we define the auxiliary influence functions 0" and 8 through

o'(z, 0 = ~ r a33(X, () dA
A In.

8(Z, 0 = 1 r B33(X, 0 dA
A In.

supplemented by
0"(0,0) = 0"(0+,0),

e(O,O) = 8(0+,0),

O"(l, I) = O"(l-, 11

e(l, I) = e(1-, I).
(1.12)

(1.13)

(1.14)t

(0 :s;; z s I),

(O:s;; z s I).

It will be shown subsequently that the limits involved in (1.12) exist. Further, O"(z, () and
e(z, 0, regarded as functions of (, will be found to possess merely finite jump discontinuities
at ( = z for each fixed z in the open interval (0, I). The physical significance of 0" and e as
stress and strain averages associated with the influence fields au and Bij is immediate from
(1.11) and (1.12).

We now substitute for 0"33(X) and edx) from (1.7) into (1.9) and (1.10) and-after a
permissible reversal in the order of the two integrations-invoke (1.11) and (1.12), as well
as (1.5) and (1.6), to arrive at

p(z) = p*(z) + A{[Po- p*(O)]o'(z, 0)

+ p*(/)O"(z, I) - {; p*«()a(z, () dn
1A p*(z) = [Po - p*(O)]e(z, 0)
'1*

+ p*(/)e(z, 1)- { p*«()e(z, 0 d(

t In deducing (1.14) we excluded the degenerate case "* = 0, i.e.,,' '1, which requires separate attention.
We shall return to this case at the end of Section 1.
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Observe that the influence functions (1 and eare computable, for a bar ofgiven cross-section
n, from (1.11) and (1.12) in conjunction with (1.8) and Mindlin's solution [7]. Hence (1.14)
constitutes an integro~differentialequation for the fictitious bar-force p*. Moreover, once
p*(z) (0 ::;; z ::;; I) is known, the actual bar-force p(z) (0 ::;; z ::;; I) follows from (1.13).

Our next objective is to reduce (1.14) to an ordinary integral equation of Fredholm's
second kind and, at the same time, to transform (1.13) into a more convenient form. In
order to accomplish this purpose we require more detailed information as to the structure of
the influence functions (1 and e, which are related through (1.8) and (1.11) to Mindlin's
[7] solution. The latter furnishes for every ( E [0, I] and every x E H (x #- eO,

0"33(X,O = 8n(ll_
v
){2(1-v)v1(x-eO-(x3 -Ov2(x-eO

+2(1- v)v1(x+eO- [(3 -4V)X3 + (]V2(X +eO + 2(X3V3(X +eO),

l+v
~dx,0 = 8n(l- V)11 {2(1-2v)v1(x-eO-(x3-Ov2(x-eO

+2(1-2V)2V1 (X +eO- [(3 -4v)x3 +(1-4v)(]vix+eO+2(x3v3(x+eO),

where

(1.15)

(1.16)

(n=I,2,3). (1.17)

We now define functions U and Vn (n = 1,2,3) by means of

1 i dAU(x) = -- --~- for all x E E,
A no Ix-~I

an
Vn(x) = -;Ii" U(x) for all x E E - flo (n = 1,2,3).

UX 3

(1.18)

Thus U is the Newtonian potential of a uniform mass distribution of density -1/A over
the disk no. From (1.18) follows, for every x E E - flo ,

Finally, we introduce functions l¥" (n = 1,2,3) by setting

(1.19)

(0 < Izl < 00), (n = 1,2,3). (1.20)
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(1.21 )

(1.22)

As is readily confirmed with the aid of (1.8), (1.11) and (1.15), (1.16), (1.17), by recourse to
(1.18), (1.20), the functions a and £ admit the representations

1
a(z, 0 = 8n(l- v) {2(1- v)Wt(z-0-(z-OW2(z-0+2(1- v)Wt(z+()

-[(3-4v)z+(]W2(z+0+2(zW3(z+m (0::;; z S 1,0 S (::;; I,z # 0,

l+v
£(z,O = 8n(l-v)t1 {2(1-2v)Wt(z-0-:-(z-OW2(z-0+2(1-2v)2Wt(z+0

-[(3-4v)z+(l-4v)(]W2(z+0

+2(zW3(z+m (0::;; z S 1,0::;; (s I,z # O.

The behavior of the functions a and £ is accordingly governed by, and may be inferred
from, the properties of l¥" (n = 1,2,3) given by (1.19), (1.20). The functions l¥", in turn, are
evidently continuous and possess continuous partial derivatives of all orders at all points
of the real axis with the exception of the origin. Moreover, (1.19) and (1.20) permit one to
show that

lim [zn- tl¥,,(z)] = 0
z~o

(n = 2,3). (1.23 )t

(0 ::;; z ::;; 1,0 ::;; ( ::;; I, z # 0,

Now let f and g be functions defined by

1
a(z,O = 2A [h(z - 0 +f(z, 0]

) l+v '(
£(z,( = 2(I_v)t1

A
[(I-2v)h(z-0+gz,m

where

(0 ::;; z s 1,0 ::;; ( ::;; I, z # 0,
(1.24)

h(z) = 1 (0 < z < (0), h(z) = - 1 ( - 00 < z < 0). (1.25)

It is clear from (1.21), (1.22), (1.23) and the regularity properties of Wn (n = 1,2,3) described
above that f and g so defined are continuously differentiable on the slit square

s = {(z, 010 ::;; z s 1,0 ::;; ( ::;; I, z # n (1.26)

and coincide on S with functions continuous on the closed square S. Consequently, the
partial derivatives of/o( and og/o(, for each fixed z E [0, 1], are integrable functions of ( on
[0,1].

At this stage we substitute for a and e from (1.24) into (1.13), (1.14), bearing in mind (1.12).
We then apply an integration by parts to the integrals appearing in (1.13), (1.14), taking
proper account of the jump discontinuitiest inherent in the step-function h. This procedure,
which derives its legitimacy from the previously established regularity properties offand g­
provided the unknown function P. (fictitious bar-force) is assumed to be continuously
differentiable on (0, I) and continuous on the closed interval [0, I]-yields after an elementary

t See the Appendix at the end of the paper for a sketch of a proof of (1.23).
t See the definition (1.25) of h. The range of integration [0, I] needs to be decomposed into the subintervals

[0, z] and [z, I].
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(0 ~ z ~ 1),

(0 ~ z ~ 1).

computation

[
1 (I+V)(I-2V)] l+v i l a

'1* + (1- v)'1 p*(z)- 2(1- v)'1 /*(() a(g(z, () d(

(1 + v)Po
= 2(1_v}I'J[1-2v+ g(z,0)]

p 1 f.1 a
p(z) = 2

0
[1 +f(z, 0)] +"2 0 p*(() a(f(z, () d(

(1.27)

(1.28)

For a specified cross-section n of the original bar, explicit integral representations of the
functions f and g entering (1.27), (1.28) are obtainable from their definitions in (1.24)
together with (1.19) to (1.22). Equation (1.27) is therefore an integral equation of Fredholm's
second kind for the fictitious bar-force p*. This integral equation is readily amenable to a
numerical solution. Once p* has been found, the actual bar-force p-which is the primary
unknown in the problem under consideration-is determined by (1.28).

The value of P(O) may be extracted directly from (1.28). For this purpose observe from
(1.11), (1.8) that

0-(0, () = 0 (0 < ( ~ 1). (1.29)

Now, (1.29), (1.24), in view of the regularity properties off established earlier, lead to

a I da(f(z, () z=o = d(f(O, () = 0

Consequently, (1.28) implies

(0 < ( ~ 1), f(O+,O) = 1. (1.30)

p(O) = Po, (1.31)

so that-in contrast to the situation encountered in the analogous treatment of Reissner's
plane problemt-no concentrated load-transfer occurs at z = O.

Equation (1.27) is inapplicablet for '1* = '1' -'1 = 0, i.e. when the bar and the surround­
ing solid have the same modulus of elasticity. In this degenerate instance p* = 0 on [0,1]
according to (1.5), and thus (1.28), because of the last of (1.30), gives way to

p(z) = P2° [1 +f(z, 0)] (0 < z ~ 1), p(O) = Po. (1.32)

Finally, we note that elimination of q from the first of (1.7) with the aid of (1.6), and a
subsequent integration by parts, lead to the representation

(1.33)

of the stress field in the original embedding medium, the influence field tTij being known from
(1.8) and Mindlin's solution [7].

t See Section 3 of [5].
t See the footnote attached to (1.14).
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2. SPECIALIZATION TO A BAR OF CIRCULAR CROSS-SECTION. ASYMPTOTIC
AND NUMERICAL RESULTS. DISCUSSION.

In this section we specialize the characterization (1.27), (1.28) of the bar-force p by
considering the particular case of a bar of circular cross-section. Thus, henceforth

(2.1)

(2.2)

where "a" is the radius of the cross-section. With a view toward expressing the functions
f and g entering (1.27), (1.28) in convenient explicit form, we set

XI = rcosO, X2 = rsinO (0 < r < 00,0:s; 0 < 2n),

~I = pcoscp, ~2 = psincp (0 < p < 00,0:s; cp < 2n),

and recall that the Newtonian potential at (Xl' X 2 , x 3 ) of a particle situated at (~b ~2' 0)
admits the Laplace-integralt representation

[(XI - ~ 1)2 +(X2- ~2)2 +X~r 1(2 = IX) exp( -lx3Is)Jo(syl{r2+ p2 -2rp cos(O- cp)}) ds (2.3)

for all x E E except x = (~1' ~2, 0). Here J 0 is the zero-order Bessel function of the first kind.
Consequently, the disk-potential V defined by the first of(1.18) may in the present instance
be written as

1 fa f21t fooU(x) = --2 exp(-lx3Is)Jo(syl{r2+p2-2rpcos(O-cp)})pdsdcpdp
na 0 0 0

for every x E E. Next, recall the series expansiont

(2.4)

00

Jo(syl{r2+p2-2rpcos(O-cp)}) = J o(sr)J o(sp)+2 L In(sr)Jn(sp)cos[n(O-cp)], (2.5)
n= 1

in which Jn denotes the Bessel function of the first kind of order n. Substituting from (2.5)
into (2.4) and bearing in mind that

(0 < s < 00), (2.6)§

one obtains, after a permissible interchange of the order of the integrations in (2.4) and
upon a legitimate termwise integration with respect to cp,

2 foo 1U(x) = -- - exp( -lx3/s)J O(sr)J I(sa) ds for all x E E.
a 0 s

Equation (2.7) in conjunction with the second of (1.18) now yields

2 fooVn(x) = --[-h(X3)]" sn-Iexp(-lx3Is)Jo(sr)Jl(sa)ds
a 0

for all x E E-oH (n = 1,2,3),

(2.7)/1

(2.8)

t Watson [9], p. 384.
:t Watson [9], p. 358.
§ Watson [9], p. 18.
II This integral representation for the Newtonian potential of a uniform circular disk is originally due 10

Weber [10].
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where h is the step-function introduced in (1.25). Inserting v" from (2.8) into (1.20) and
carrying out the area-integration (over the circular region n z) under the improper integral,
as is justified, one is led to

4
W.(z) = ----,,-:tiC -h(z)]·R.(lzl) (0 < Izi < (0),

a

provided R., for every positive integer n, is the function defined by

(n = 1,2,3), (2.9)

(0 < t < (0). (2.10)

Evidently, R. is continuous and has continuous partial derivatives of all orders on (0, (0).
It is clear from (2.9), (1.21), (1.22), that the influence functions (j and G may now be

expressed in terms of the integrals R. (n = 1,2,3), the step-function h, and elementary
functions. Once this has been accomplished, the respective "continuous parts" f and g of
(j and Gare obtainable directly from (1.24). In this manner one arrives at the following results
for a bar of circular cross-section:

1
f(z,() = I-v {(1-v)h(z-()[2R t(lz-W-1]+2(1-v)R t (z+0

(2.11)

for all (z, 0 in the region S given by (1.26).t The required partial derivatives of f(z, 0 and
g(z, 0 with respect to ( are readily computed from (2.11) with the aid ofthe recursion relation

(0 < t < (0), (2.12)

which is implied by (2.10). This computation furnishes

a 1
a(f(z,O = (1- v)a3 {(l-2v)a2 [R z(lz-W-R z(z+0] +alz-(IR3(lz-W

-ace +(l-4v)z]R 3(z+0-2z(Riz+0) (0::; z ::; 1,0::; ( ::; I, z #- 0,
(2.13)

a 1
-g(z,O = 3{(1-4v)aZRz(lz-W-(l-4v+8vZ)aZRz(z+0+alz- (IR 3(1z-W
a( a

-(1-4v)a(z+OR3(z+0-2z(R4(z+0) (0::; z::; 1,0::; (::; I,z #- O.

t As was pointed out in Section I, the functions f and g may be continuously extended onto S. This claim
may be confirmed in the special case at hand by means of (2.11) and asymptotic estimates of R.(t) as t --+ 0, which
will be cited later on (See (2.18)).
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We adjoin here the analogous representation for the partial derivative ofj(z, 0 with respect
to z, which will also be needed subsequently.

o -1
ozj(z,O = (1-- v)a3 {(1-2v)a2[R 2(lz- W - R2(z+ OJ +alz-(IR3(lz-W

(2.14)
-a[(-(3-4v)z]R3(z+O+2z(R4(z+0) (0 S; z S; 1,0 S; (S; I,z of- O.

It is essential for numerical purposes, as well as for the asymptotic study of the actual
bar-force p near the ends of the embedded bar-segment, to examine in detail the singular
behavior at z = ( of the partial derivatives listed in (2.13), (2.14). This behavior, in turn, is
evidently governed by the asymptotic character of Rn(t) as t ~ O. The functions Rn, intro­
duced through (2.10), are expressible in terms of the complete elliptic integrals of the first
and second kind. Indeed, with

("/2 dcp
K(k) = Jo J(1-k2 sin2 cp)'

(2.15)t

one hast

(0 < t < (0),

1 t
Rt(t) = 2- TCak[K(k)-E(k)] (0 < t < (0),

R2(t) = :k[(2-e)K(k)-2E(k)] (0 < t < (0),

R 3(t) = - 2
tk

K(k) +a(2 -kk
2
)E(k) (0 < t < (0),

TCa TCt

P k
R4(t) = 4TC K(k) +2TC[2(a/t)2 - k2]E(k) (0 < t < (0).

(2.16)

Equations (2.16) confirm the analytic character of Rn (n = 1,2,3,4) on (0, (0). Now, from
the last of(2.15) and familiar asymptotic estimates§ of K(k), E(k) as k ~ 1, follows

K(k(t)) = -log(t/8a)+O(t210g t) as t ~ 0,

E(k(t)) = 1+O(t210g t) as t ~ O.
(2.17)

t Our previous use of E for the entire space ought not to cause confusion.
t See Eason, Noble, and Sneddon [11] for the first three of(2.16); the last of(2.16) is easily deduced from the

preceding one with the aid of (2.12) and (2.15).
§ See, for example, Oberhettinger and Magnus [12], p. 3.
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Combining (2.16) and (2.17), one thus arrives at the estimates

Rt(t) = 1+0(tlogt) ast-+O,

1
R2(t) = --[log(t/8a)+2]+0(t2 10g t) as t -+ 0,

n
(2.18)

a
R 3(t) = -+ O(t log t) as t -+ 0,

TCt

a2

R4(t) = -2+ O(log t) as t -+ O.
TCt

Equations (2.18) enable one to remove from the partial derivatives (2.13), (2.14), in closed
elementary form, those contributions that become unbounded as (-+ z (0:$ z :$ I).
We now cite the decompositions thus established.

o 1
o(/(z,() = n(1-v)a {(l-2v)log[!z-(I/(z+m+nF(z,0),

o 1
a(g(Z, 0 = - na {(1-4v) log[lz- W8a]-(1-4v+ 8v2

) log[(z+ W8a]

+ nG(z, 0} (0 :$ z :$ 1,0 :$ ( :$ I, z =F 0,
a 1
-;-/(Z, 0 = (1 ) {(1-2v)log[lz-W(z+()]+nH(z,m
uZ n -va

(0 :$ z :$ I, 0 :$ ( :$ I, z =F (),

where F, G, H, are new functions to be discussed presently. Let Sf be the plane region ob­
tained by deleting the origin from the closed squaret S, so that

Sf = {(z,0I0 < z :$/,0 < (:$ I}. (2.21 )

The functions F, G and H are bounded and continuous on Sf; moreover, for any fixed
direction of approach, they possess limits as (z, 0 -+ (0,0). Explicit representations are
needed merely for F and G:

1
F(z, () = -(1-2v){R2(lz-W-R2(z+()+-log[lz-W(z+()]}

TC

1
-2:{alz-(IR3(1z-W-a[( +(1-4v)z]R3(z+()-2z(R4(z+0)

a

(0 :$ z :$ I, 0 :$ ( :$ I, z =F (),

1-4v 1
F(z, z) = --+(1-2v) [R 2(2z)+-10g(z/4a)]

n n

(2.22)

(0 < z:$ f), F(O,O+) = 0;

t Recall (1.26).
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G(z,O = -(1-4v) {R2(iz-m+~log[lz-W8a]}
n

-(l-4v)a(z+OR3(z+O- 2z'R4 (z +O}

1-8v 1
G(z, z) = --+(1-4v+ 8v2) [R 2(2z)+-log(z/4a)]

n n

(0 s z s i, 0 s , s I, z T- n
(2.23)

(0 < z s i), G(O, 0+ ) =
4v(l +4v)

n

Equations (2.19), (2.22) and (2.23), together with the elliptic-integral representation of
Rn(n = 2,3,4) contained in (2.16), supply-in a form suited to numerical purposes-the
kernels of(z, 0/0' and og(z, 0/0' involved in (1.27) and (1.28) for the case of a bar ofcircular
cross-section. Further, the values f(z,O), g(z,O) (0 S z s i), which are also needed in
connection with (1.27) and (1.28), are computable from (2.11) and (2.16) for 0 < z s I,
while

f(O+,O) = 1, g(O+, 0) = (1-2vf, (2.24)t

as is easily verified on the basis of (2.11), (2.18). The Fredholm integral equation (1.27),
which determines the fictitious bar-force p.(z) (0 s z S l), may now be solved numerically
for any admissible choicet of the elastic constants '1', '1 and v. To accomplish this task the
range of integration [0, i] in (1.27) was partitioned uniformly. The contribution to the
improper integral arising from the (integrable) logarithmic singularity§ of the kernel
og(z, 0/0' at z = , was then evaluated in closed elementary form (in terms of the values
of p. at the mesh-points of the partition) upon replacing p. by a continuous, piecewise linear
function. On the other hand, the ordinary trapezoidal rule was used to compute the con­
tribution to the integral under consideration stemming from the bounded portion G of the
kernel, which is given by (2.23). In this manner (1.27) was reduced to a system of linear
algebraic equations, whose solution was obtained on an electronic computer. Once p.(z)
(0 s z s i) had been so determined, the desired actual bar-force p(z) (0 s z s i) was
found from (1.28) by means of a numerical evaluation of the improper integral in (1.28)
that is strictly analogous to the numerical integration scheme described above.

Before proceeding to the results thus established, we investigate the asymptotic be­
havior of fi(z) at the endpoints z = 0 and z = i of the embedded bar-segment. Substituting
for (j from (1.24) into (1.13) and differentiating the resulting identity with respect to z, one
draws

1{ ofI ofI f'O}p(z) = -2 [Po-p.(O)]-;- +p.(l)-;- - p.(O-;-f(z,Od'
uZ (Z,O) uZ (z,/) 0 uZ

(0 < z < l). (2.25)

Moreover, for the bar of circular cross-section, of(z, ')/oz admits the representation
(2.20). Next, we suppose that for some fixed (X > 1, p~ is absolutely integrable on [0, I] and

t Note the agreement between the first of (2.24) and the last of (1.30).
t Recall from (1.4) that '1. = '1' -'12: 0 and see the footnote attached to (1.14).
§ See (2.19).



Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod 83

invoke the Holder inequalityt to justify the estimate

\{P.(O:/(Z,Od( l~ [Dp·mlad(Jl/Tf~I:/(Z,Or d(J 1

/P,

1 1
(X> 1, ~+7i = 1, (0 ~ z ~ l).

(2.26)t

(2.27)

Consequently, the integral in the right-hand member of(2.25) is bounded on (0, l) under the
foregoing rather weak assumption concerning p•. In these circumstances it follows from
(2.25) and (2.20) that

p(z) = 0(1) as z ---. 0,

(1 - 2v)p.(l)
p(z) = 2n(1-v)a 10g[(l-z)/aJ+0(1) asz---.l.

Next, it is essential to examine the manner in which the various physical parameters
enter the solution of the problem under consideration. To focus attention on this issue,
we now write

p(z) = p(z; Po, a, l, 1]', 1], v) (0 ~ z ~ l), (2.28)

where, it will be recalled, the parametric arguments Po, a, l, 1]', I] and v, in this order, stand
for the applied scalar bar-load, the radius of the bar, the length of the embedded bar­
segment, Young's modulus of the bar, Young's modulus of the surrounding medium, and
Poisson's ratio of the latter. It is clear from the structure of (1.27), (1.28), in view of (1.4),
(2.11), (2.13) and (2.10), that the solution may be cast into the dimensionless form

p(z)/Po = t/J(z/a; l/a, 1]'/1], v) (0 ~ z/a ~ l/a), (2.29)

so that the dimensionless (normalized) bar-force p(z)/Po depends exclusively upon the
dimensionless depth-coordinate z/a, the length-ratio l/a, the stiffness-ratio 1]'/1], and the
Poisson-ratio v. The function t/J in (2.29) is independent of l/a and v for 1]'/1] = 1, i.e. if the
bar and the embedding medium have the same modulus of elasticity. For this degenerate
limiting case, (1.32), the first of (2.11), and (1.25) furnish

(0 < z ~ l), p(O) = Po, (2.30)

with R 1 , Rz given by (2.15), (2.16).
We turn now to the discussion of illustrative numerical results for the decay of the

actual bar-force p, which are depicted graphically in Figs. 3-8. The load-diffusion curves
displayed in these diagrams show the normalized bar-force p(z)/Po as a function of the
dimensionless depth-coordinate z/a for 0 ~ z/a ~ l/a and various choices of the dimension­
less physical parameters l/a, 1]'/1], v. Each ofthe six figures under discussion refers to a single
Poisson's ratio v of the embedding medium, to two values of the length-ratio l/a and to

t See, for example, Beckenbach and Bellman [13], p. 21.
t Note that the second integral in the right-hand member of (2.26) exists by virtue of (2.20), for every P> O.

Further, it is not difficult to show that this integral is bounded for 0 ~ z ~ I.
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four distinct choices of the stiffness-ratio 1'(/1]. The thirty-six combinations of parameter­
values covered by the graphs presented here are listed in the following table.

Fig. 3: l' = 0; [/a = 5,10; IJ'/IJ = 1,2,4,8.
Fig. 4: l' = 0; [/a = 10,20; IJ'/IJ = 1,2,4,8.
Fig. 5: l' = ±; [/a = 5, 10; IJ' /IJ = I, 2, 4, 8.
Fig. 6: l' = ±; [/a = 10,20; IJ'/I/ = 1,2,4,8.
Fig. 7: l' = t l/a = 5,10; IJ'/IJ = 1,2,4,8.
Fig. 8: l' = .!; l/a = 10,20; I/'!'7 = 1,2,4,8.

As is apparent from this table, the load-diffusion curves appropriate to l/a = lOin Figs.
3, 5 and 7 are, for comparison purposes, repeated in Figs. 4, 6 and 8.

p(zl!P.

1.0

0.8

8 ~ 7)'/rl
---.i/o~IO

----- .i/o "5

7 8

20

9

plzl/p.

1.0

0.8

0.6

0.4

0.2

FIG. 3. Circular bar: v = 0, [/a = 5, Ifa = 10.

8~7)'h

---.i/o~20

----- .i/o ~ 10

FIG. 4. Circular bar: v = O,l/a = 10, l/a = 20.
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p(z)/Po

0.6

0.4

0.2

.t/o -10

.t/o - 5

o1----L__..L_-.Jc-_~::=L=::I=~~~~t=~3~~i_ z/o
o 5 6 7 8 9 10

FIG. 5. Circular bar: v = *' [/a = 5, [/a = 10.

p(z)/po

10

0.8

0.6

0.4

02

.t/o -20

.t/o -10

00L---L--L::::::J===~=~E~~~;;;;;;~;;;;;;;;;;ii~iiiiii~.._~_ z/o
2 4 6 8 10 12 14 16 18 20

FIG. 6. Circular bar: v = i. [/a = 10, I/a = 20.

p(zl/po

10

0.6

0.4

0.2

& - ."'1.,,

---.t/o-IO

----- L/o - 5

20

°OL----l--..L--L-~==:L=::::::J=~;:~=t::::::3~~~__ z/0
3 4 6 8 9 ~

FIG. 7. Circular bar: v = !, [/a = 5,I/a = 10.
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S'''t'/ry

--.£/0'20

----- .t/o ' 10

"t. v

_L::::::::t=:-::::::t=~~2~~~~~;;=:¥====L-_ '/0
4 6 8 10 12 14 16 18 20

FIG. 8. Circular bar: v == 1, lla == 10, lla = 20.

All of the curves under consideration represent functions p(z)/po that are steadily
decreasing throughout their interval of definition 0 ::;; zla ::;; lla. Further, in each instance,

P(O)/Po = 1, P(l)lpo > 0, (2.31)t

the first of (2.31), according to (1.31), being valid for a bar of arbitrary cross-section. There­
fore, no part of the applied load is communicated to the embedding medium through
bond-forces concentrated at z = 0, whereas a portion of the load is transmitted to the
surrounding solid through bond-forces concentrated at the terminal cross-section of the
bar. The graphs indicate that this load-portion increases with the stiffness-ratio and is a
decreasing function of the length-ratio; in the examples to which Figs. 4, 6 and 8 refer, the
fraction ofthe load transferred at the embedded end ofthe bar is less than 10%for Iia = 10
and less than 5%for lla = 20.

The absence of any concentrated load-transfer at z = 0, predicted by the current solu­
tion, is interesting in view of the corresponding result encountered earlier in an analogous
treatment of Reissner's plane load-transfer problemt: there, a substantial part of the load
was found to be transmitted to the sheet at the junction of sheet and stringer. On the
other hand, as was shown in [5], singular load-transfer at either end ofthe attached stringer­
segment is precluded within Reissner's [2] original formulation of the plane problem.

For all illustrative examples considered here, the initial slope (at z = 0) of the load­
diffusion curve is finite in agreement with the first of (2.27); the infinity of the end-slope at
z = I, predicted by the second of(2.27)§ if v oF t, is not discernible on the scale of Figs. 3-6.

As is intuitively plausible, each of the diagrams reflects a less rapid diffusion of the load
with rising values of the stiffness-ratio. Even for a relatively stiff bar of sufficiently large
length-ratio, however, most of the load-transfer takes place in the vicinity of the surface of
the embedding medium and--in this range- is quite insensitive to changes of the length­
ratio. To illustrate this observation, we refer to Fig. 6 (v = !) and regard the bar-radius as

t The analytical determination of P(l), on the basis of (1.27), (1.28), appears to offer serious difficulties even for
the circular bar. In the degenerate case r(1'1 = 1, P(l) for the circular bar is immediate from (2.30), (2.15), (2.16).

t See Section 3 of [5].
§ P.(I) was found not to vanish in the examples dealt with numerically.
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fixed. An inspection of the curves in this figure reveals that for r(/'1 ::; 8 and I = 20a over
half of the applied load is transferred to the matrix by the bar-segment in the range
o ::; z ::; 4a. Further, the dashed curves appropriate to I = lOa are, in this range, practically
indistinguishable from the corresponding solid curves,t which pertain to I = 20a. Ac­
cordingly, here very little benefit is derived from a doubling of the embedded bar-length.
This finding, which is also borne out by the results given in Figs. 4 and 8, would appear to
be significant for design purposes.

In conclusion we emphasize once more that the analysis carried out in this section is
bound to be inadequate unless the length of the embedded segment of the bar is sufficiently
large compared to the bar-diameter.
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APPENDIX

Proof of the limit-relations (1.23)

We indicate here a proof of the limit-relations (1.23) pertaining to the functions
l¥,. (n = 1,2,3) defined by (1.19) and (1.20). In order not to detract from the essence of the
proof, we shall confine our attention to a cross-sectional domain II, the boundary all of
which is a simple closed curve with continuously varying curvature.t Accordingly, denoting
by s the arc-length of all (measured counter-clockwise from an arbitrarily chosen fixed
point of the closed curve at hand) we assume that all admits the parameterization

(1)

t The dashed and the solid curve for tOrt = 1 are identical in all figures since here p is independent of the
length-ratio, as well as of v. See (2.30) and the remarks preceding (2.30).

t The following argument is easily generalized to accommodate a boundary an that exhibits corners, but is
composed of a finite number of arcs with continuous curvature.
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where Al and Al are functions twice continuously differentiable on [0, soJ, while

(fJ = 1,2), (2)

So being the total length of oIl. The curvature I< of oIl is given by

and, for convenience, we set

(3)

m = max II«s)l,
o~s5So

1
to =

2m
(4)

Next, let II' be the closed band-shaped sub-region of n consisting of all points in n
whose perpendicular distance from oIl fails to exceed to, Le.

II' = {(XbXl~(XI,Xl)En, [XI-AI(SW+[Xl-Al(SW:$; t5, (O:$; S:$; so)}. (5)

Further, for every point (Xl' Xl) in II', let S(X I , xz) be the arc-length associated with that
orthogonal projection of (x I' Xz) onto oil which has the smallest distance from (x I' Xl) ;
also, let t(X I , xz) be the distance of this orthogonal projection from the point (Xl' xz).
Evidently, S(XI , Xl) and t(Xl ,Xl) define an orthogonal curvilinear coordinate-net on II'.
The underlying coordinate transformation is characterized by

(6)

and the mapping (6) is one-to-one on II'; indeed, its Jacobian obeys

OX 1 0X2 OXIOX lJ(s t) = - - - - = 1 - tl«s) > 0
, os ot ot os >

(0 :$; s < So, 0 :$; t :$; to), (7)

(8)

the inequality being a consequence of (4). Finally, for every (x I' Xl) in II, we adopt the
notation

L(XI,X1 ) {(~I'~l)I(~I-Xl)l+(~l-Xl?:$; tt1(X ll X1 )},

tt(XI,X1 ) min.J{(~I-Xlf+(~2-X2)2}, (~1'~2)EoIl,

so that I(x I' Xl) stands for the interior of the largest closed circular disk contained in n
and centered at (x I' X2)'

Having disposed of these geometric preliminaries, we recall from (1.20), (1.19) and (1.3)
that

where

(0 < Izi < (0), (9)t

(10)~

t Note that we now write (XI' xz, x3) in place of the single vectorial argument x.
t The subscript l; attached to the element of area is to indicate that (~I' ~z) are the variables of integration.
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(0 < Izl < 00),

for all (x l, x 2 ) E 0 and all z -# O. From (9) follows the estimate

!Wl(Z)- ~nh(z) I::;; M(z)+N(z)

in which

(11)

(12)

M(z) = ~ I IVl(X l ,X2'Z)- 2n h(z) IdA,AJn - n , A

N(z) = ~t.IVl(Xl'X2'Z)- ~h(Z)ldA (0 < Izi < 00),

whereas h is the step-function defined in (1.25). In order to establish the first two of (1.23) it
suffices to show that M(z) and N(z) tend to zero as z --+ O.

Now fix (x l, x 2) in 0, write I: and Jl in placet of I:(x 1 , x 2) and Jl(x 1 , x 2), and infer from
(10) that

( _ 2nz III P dp z I 2 2 - 3/2
VlXl,X2,Z)-AJo(p2+z2)3/2+:4Jn_I;(P +z) dA~

for every z =f. O. However,

(13)

(z =f. 0),
III pdp z

z Jo (p2+ Z 2)3/2 = h(z) J(Jl2+ Z2)

i 2 2 - 3/2 fOO pdp _ 2n
(p +z ) dA~ < 2n (p2 2)3/2 - /( ..2 2)

n-I; Il +z VI}' +z
(z =f. 0).

(14)

Combining (13) and (14), one has

I
2n I 4nlzl

Vl(X l ,X2,Z)-Ah(z) < AJ(Jl2+ Z2)

But, according to (5) and (8),

(0 < Izl < 00). (15)

0< to < Jl(X l ,X2) for all (X l ,X2)EO-O'.

Consequently, if A' stands for the area of 0', (15) and the first of (12) furnish

(16)

(17)
4n(A - A')lzl

M(z) < A 2J(t5+ Z2 ) = 0(1) as z --+ O.

On the other hand, the second of(12), together with (15) and the second of (8), yield the
estimate

(0 < Izi < 00) (18)

since::: Jl(X 1 ,X2) = t(X l ,X2) for all (X 1 ,X2) in 0'. Changing the variables of integration in
(18) from (Xl' X2) to the curvilinear coordinates (s, t) introduced in (6) and bearing (7) in

t See (8) for the definition of E(Xt. X2) and p(xt • X2)'
t Recall the geometric significance of the curvilinear coordinate t(XI> X2) associated with the mapping (6).
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I(z) flO fsn .1-. tx(S}
-------ds dt

o 0 J(t2 +Z2)

From (19) and (4), in turn, follows the estimate

(0 < Izi <x). (19)

3soi lO

dl 3so J 2 20< I(z):::;; --2 -J2 "2: = -2 [Iog{to+ (lo+Z )}-loglzIJ
o (I +z )

Combining (18) and (20), we reach

(0 < Izi < 00). (20)

(21)
4nlzl

N(z) < 71(Z) = 0(1) as z -> O.

Finally, (11), (17), and (21) assure that

~[~W-~~J=~ ~
z~o A

which confirms the first two of (1.23). The remaining limit-relation in (1.23) may be esta­
blished by similar means.

(Received I May 1969)

A6CTpaKT-l1ccJIeAOBaHlle KacaeT AI1Q>Q>YJI1I1 oceBOH HarpY3KIl CTep:lKHlI 06blKH08eHHoro nOCTollHHOro
nonepe'lHero Ce'feHHlI. norpy:lKeHHOrO AO KOHe'fHOH rJIy61lHbi H npIlCOe)l.HHeHHOro K nOJIy6ecKOHe'fHoMy
TeJIy. KOTopoe 06JIaAaeT pa3HblMH ynpyrHMI1 CBoHCTBaMH. CTep:lKeHb neprreHAIlKyJIlipeH K nJIOCKOCTIl
CpeAbl, B KOTOPOH OH rrorpy:lKeH. OnpeAeJIeHHe :lKeJIaeMblX KOHe'lHbIX YCIlJIHH B rrorpy:lKeHHolt 'faCTIl
CeTp:lKHlI, CBOAHTCli K HHTerpaJIbHoMy ypaBHeHHIO Q>peArOJIbMa, nyTeM npH6JIHlKeHHolt CXeMbl. 3Ta cxeMa
onpeAeJIeHHa H HcrrblTaHHa paHee, B CB1I31l C 60JIee :meMeHTapHolt TpexMepHol!. 3aAa'felt nepe)l.a'fH Harpy3KH.
,l],aIOTclI, AJIli 'faCTHOro CJIy'fali CTep:lKHR KpyrJIOro nonepe'fHero Ce'feHHR, 06wHpHbie 'lHCJIeHHble pe3yJlb­
TaTbl, HJlJIIOCTPHPYlOwHe 3aTyxaHHe yCHJIHlI B CTeplKHe, COOT8eTCT8YlOwee pa3HbiM 8HAOM OnpeAeJI­
1I10111HX reOMeTpH'fecKI1X H MaTepl1aJlbHblX napaMeTpOB.


